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Abstract   
 
A mixed analytical/numerical method is developed here to solve the low Reynolds number k-
epsilon turbulence model.  In this method the advection-diffusion part is solved numerically, 
while the source terms are split into two parts: one part is solved analytically and the next is 
solved numerically.    
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1. Introduction 
Because of the recent enormously progress in the capability of computers, low Reynolds two-
equation turbulent models become more and more welcome in engineering fluid computation. 
In the past, various forms of low-Reynolds-number k - ε turbulent models have been proposed. 
The detail of two-equation models and low Reynolds corrections are presented in Chapter 14 
(Turbulence Modeling and Simulation) of handbook [1].  

Though mathematically the k – ε model is well-posed[2], the strong nonlinearities may 
interact with numerical errors in such a way that computation may break down easily.. A 
typical behavior of unstable computations involves the loss of positivity of k or ε, though the 
original differential equations have positive solution [3]. The appearance of negative values 
changes the sign of several terms in the models, so that turbulent quantities may increase 
unboundedly [4]. Even though the two turbulence equations can be solved exactly in the same 
manner as the mean flow equations, it has been found that such a method often leads to an 
unstable solution, or even incorrect solutions [5]. The damping functions in the low Reynolds 
turbulent models improve the model prediction capability for near wall flow, but also 
introduce more severe numerical stiffness for the source terms.  

There are a huge amount of numerical methods for compressible Navier-Stokes equations 
coupled with two equation models [6-9]. The two-equation turbulent model is a typical 
example of partial differential equations with source terms. Great progress has been made in 
efficient treatment of the source terms [10-12]. Helzel, LeVeque, and Warnecke [12] treated 
chemical reacting flow with an Arrhenius law for the source term by mixed method in 
detonation waves computation. In [13], a mixed analytical/numerical method for oscillating 
source terms has studied. In this method the advection-diffusion part and the source terms are 
treated separately through operator splitting. The advection-diffusion part (PDE) is integrated 
numerically while the source term part (ODE) is integrated analytically. Hence this method is 
called mixed analytical/numerical method. The mixed method performs well for partial 
differential equations with source terms, in which the time scale of source term (S-scale, 
denoted TS) is much smaller than the mean flow scale (M-Scale, denoted TM) inherent to the 
advection-diffusion part. Furthermore, the mixed method has been extended to the implicit 
solution of high Reynolds number and compressible turbulent flows[14]. Numerical results 
show the mixed method can give robust, steady and fast convergent solution.  

In this paper, we extend the mixed method to low Reynold number turbulent models. The 
essential new feature of the mixed method for low Reynolds number turbulent models lies in 
the treatment of the source terms which contain new damping functions. With respect to the 
high Reynolds number counterpart, the low Reynolds number turbulent models retain the 
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orginal source terms modified with damping factors and sometimes contain additional 
damping terms. In the mixed method proposed in this paper, the damping factors are treated as 
constant at each time step, so that the main part of the source terms are still analytically 
integrable at each time step. The additional damping terms are treated numerically.  
2. Governing Equations 

    The governing equations are obtained by Favre Averaging the Navier-Stokes equations 
and modeling the Reynolds stress. In conservative form these equations are written as 

 c c v vF G F GU
t x y x y

∂ ∂ ∂ ∂∂
+ + = +

∂ ∂ ∂ ∂ ∂
 (1) 

In this paper, we use the Hwang-Lin low-Reynolds number k-ε% turbulence model[14] as 
example.  
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The production term Pk  is given by  

 i k i
k t

k i k

U U UP
x x x

µ
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
 (6) 

The eddy viscosity is calculated as 

 
2

t f C kµ µµ ρ ε= % (12) 
The functions Π and ξ  are defined as 
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The coefficients and damping functions are  

 Cµ=0.09,  Cε1=1.44，Cε2=1.92    

 
31 exp[ 0.01 0.008 ]f y yµ λ λ= − − −   

 
31 exp[ 0.01 0.008 ]k y yλ λσ = − − − , 1.3 1.0exp[ 10]yε λσ = − −   

 1 1.0f = , 2 1.0f =   

 ( )2
2 k

yε ε ν ∂
∂= +%   

where   y
kyλ ν ε= %. 

3. Numerical Method 
The two set equations (1) and (2) are solved separately. The convective numerical flux at the 
cell interface is evaluated using Roe’s approximated Riemann solver with MUSCL treatment 
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to achieve second order accuracy. The simplified multistage scheme with four stages is 
applied to advance in time.  

The advection-diffusion part of the two-equation model is discretized in the same way as 
for the Navier-Stokes equations. Only the source term needs special treatment. The numerical 
treatment of source terms of the turbulence model equations is of mayor importance for the 
stability of this scheme[16]. The fundamental means is to treat the negative source terms 
implicitly and the positive terms explicitly[7]. However, the time step still has to be small 
enough in order to obtain realistic values of k, ε and µt. According to the different treatment for 
Jacobian matrix for implicit part, there are three method: point implicit method[6], 
approximate Jacobian method[5,17] and exact Jacobian method[18]. In this paper, we adopt 
the second method. 
4. Mixed Analytical/numerical Method for low Reynolds number turbulent models  
The turbulence model equations contain advection-diffusion operators and source terms. In the 
mixed method the advection diffusion part (PDE) is integrated numerically, while the source 
term (ODE) is integrated analytically. 
4.1 Treatment of the source terms 
For the case of low Reynolds number models it is not always possible to integrate the source 
terms analytically. With respect to the high Reynolds number counterpart, the low Reynolds 
number turbulent models retain the original source terms modified with damping factors and 
sometimes contain additional damping terms. In the mixed method proposed in this paper, the 
damping factors are treated as constant at each time step, so that the main part of the source 
terms are still analytically integrable at each time step. The additional damping terms are 
treated numerically.  

Following the original construction of the mixed method, we first consider the ODE due 
to the source terms 

 ( ) ( )
T

s D
dU S U S U

dt
= +  (7) 

Here SS(U) is the standard part which is similar to the source term of the high Reynolds 
number model, modified only by adding damping factors, and SD(U) stands for the additional 
damping terms. Precisely,  SS(U) is defined by 
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The additional damping terms SD(U) are treated numerically, while the standard part SS(U)  
is solved analytically by considering the following ODE 
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with the parameters 

 1 1 1 2 2 2C f C C f C C f Cε ε ε ε µ µ µ
′ ′ ′= = =   

treated as constant at each time step. Hence the standard part should have the same form of 
analytical solution as the high Reynolds number model[13], and this analytical solution for (16) 
can be written as 
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Here k0 and 0ε% stand for initial value of turbulent kinetic energy k and dissipation rate ε.  
4.2 Mixed method 
Now the mixed method for low Reynolds number models can be written as 
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of the ODE due to the standard source terms. This analytical solution, when limited, can be 
written as 
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The parameter δ limits the maximum of the source term integral. The choice of δ=0.1 works 
well in our numerical experiments. 
5. Numerical Results 
5.1  Flat plate 
We first calculate a turbulent flow past a flat plane. The grid is 80×41. The distance of the first 
grid next to the wall is no more than y+=0.45. The Reynolds number is Re=1.0×107, the inflow 
Mach number is Ma=0.2. The convergence history of mixed method is compared with that of 
traditional method in Fig.1. The latter can't converge with the same condition. The inner layer 
velocity profile of flat plane flow is shown in Fig.2, comparing the van Driest's and Spalding's 
theory. The figure gives the velocity profile of 7 sites in x direction. The agreement is also 
good.  
5.2  Transonic Diffuser 
 Consider transonic flow with a weak shock through a converging diverging diffuser[19]. This 
configuration has an entrance to throat area ratio of 1.4, an exit to throat area ratio of 1.5. The 
corresponding Reynolds number is 9.370×105 and the Mach number is Min=0.9. The total 
pressure at inflow is 1.349×105 Pa, the static pressure at the outflow is 1.11×105Pa. These 
flows were characterized by the ratio, R, of exit static to inflow total pressure. For the weak-
shock case the value of R was 0.82. 
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    The convergence history is shown in Fig.3, comparing that with traditional method. We see 
the computation with traditional method fails to converge, while the mixed method not only 
converge steadily, but also converge faster than the traditional method.  
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 Fig.1. Comparative convergence history for flat plane        
 Fig.2. Velocity profile of flat plate flow 
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      Fig.3. Comparative convergence history for transonic diffuser 
Fig.4 Velocity profiles at four axial locations for transonic diffuser 

5.3  RAE2822 Airfoil 
The RAE2822 airfoil has been extensively used for the validation of Navier-Stokes codes 
applied to transonic flow. The key flow condition for this test case is: Free stream Mach 
Number Ma∞=0.73, Reynolds number Re=6.5×106, and angle of attack in degree α=3.19. The 
convergence histories with mixed method and with conventional numerical method are 
compared in Fig.5. The first one converges faster. The pressure coefficient and skin friction 
coefficient with experimental results are shown in Fig.6 and Fig.7 respectively, comparing the 
conventional method results. The numerical results with mixed method agree with experiment 
data.  
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       Fig. 5. Comparative convergence history for RAE2822 airfoil 
   Fig. 6. The pressure coefficient profiles of RAE2822 airfoil 
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         Fig. 7. The skin friction coefficient profiles of RAE2822 airfoil 

5.4  NLR7301 Wing-flap Airfoil 
The flow around the two-element NLR7301 airflow with 2.6% gap has been computed for the 
flow condition: Re=2.51×106 and angle of attack α=13.1. Fig.8 gives the pressure distribution 
on wing and flap.   
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   Fig. 8. The pressure coefficient profiles of NLR7301 airfoil 

 
6. Concluding Remarks 
The mixed analytical/numerical method has been extended to the numerical solutions of low 
Reynolds number k-ε turbulence models. The mixed method is applied to Hwang-Lin low 
Reynolds turbulent model and several test problems. The numerical results show that the 
mixed method is numerically more robust than the traditional pure numerical method. 
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